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Abstract
We consider two-site XXX Heisenberg magnets with different boundary
conditions, which are integrable systems on so(4) possessing additional cubic
and quartic integrals of motion. The separated variables for these models are
constructed using the Sklyanin method.

PACS numbers: 02.30.Ik, 02.30.Zz, 02.30.Uu, 02.40.Yy, 45.30.+s

1. Introduction

In recent years much effort has been spent on the classification of integrable cases of
multidimensional tops. The case of the four-dimensional top is particularly interesting since
it has direct physical significance [1]. Some of the integrable systems discovered recently are
new even in the classical setting; e.g. the equations of motion have the form of Euler–Poisson,
Kirchhoff or Poincaré equations.

In this paper we will describe two new integrable cases of the four-dimensional top. Our
construction is based on the so-called quadratic r-matrix algebras and on the use of integrable
spin chains with different boundary conditions. Gaudin spin chains without boundaries have
already been applied in the study of Euler, Lagrange, Neumann and Clebsch systems on
e(3) and Manakov and Steklov systems on so(4) [2]. Some degenerate cases for the open
Heisenberg spin chain are connected to the Goryachev–Chaplygin top [4], auxiliary symmetric
Neumann system and Kowalevski–Goryachev–Chaplygin top [5]. The separated variables for
all these models may be derived from the separation of variables for the XYZ spin chain [6].

Our examples are connected to XXX Heisenberg magnets with boundaries [7, 8]. The
corresponding Lax matrices will be constructed using the Lax matrix for the standard two-site
XXX Heisenberg magnet:

T (λ) =
(

λ − s3 + iδ1 s1 + is2

s1 − is2 λ + s3 + iδ1

) (
λ − t3 + iδ2 t1 + it2

t1 − it2 λ + t3 + iδ2

)
. (1.1)
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Here δi are numerical shifts of the spectral parameter λ. The dynamical variables si, ti are
coordinates on so(4) = so(3) ⊕ so(3) with the following Lie–Poisson brackets:

{si, sj } = εijksk {si, tj } = 0 {ti , tj } = εijktk (1.2)

where εijk is the totally skew-symmetric tensor.
The matrix T (λ) (1.1) defines the representation of the Sklyanin algebra

{ 1
T (λ),

2
T (ν)} = [r(λ − ν),

1
T (λ)

2
T (ν)] (1.3)

on generic symplectic leaves of so(4). Here we use the standard notation
1
T (λ) = T (λ) ⊗ I,

2
T (ν) = I ⊗ T (ν) and the r-matrix has the form

r(λ − ν) = i

λ − ν


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.4)

Applying the standard machinery [7, 8] to T (λ) (1.1), one gets another integrable system with
cubic and quartic additional integrals of motion. In fact, the construction leads automatically
to the separated variables.

2. Cubic integrals of motion

The main property of the Sklyanin algebra (1.3) is that for any numerical matrix K, the
coefficients of the trace of the matrix KT (λ) give rise the commutative subalgebra

{trKT (λ), trKT (ν)} = 0.

All the generators of this subalgebra are linear polynomials on coefficients of entries Tij (λ),
which are interpreted as integrals of motion for the integrable system associated with matrix
T (λ). For instance, representation (1.1) generates one linear and one quadratic integral of
motion in variables si, ti and the corresponding integrable system is equivalent to a special
case of the Poincaré system [9].

According to [8], we can construct commutative subalgebras generated by quadratic
polynomials on coefficients of Tij (λ). Let us introduce the matrix

T̃ (λ) = Kd(λ)T (λ) (2.5)

where T (λ) is given by (1.1) and

Kd(λ) =
(

λ + A0 a1λ + a0

b1λ + b0 0

)
. (2.6)

Here ak, bk are arbitrary numerical parameters and A0 depends on the dynamical variables:

A0 = a1(is2 + it2 − t1 − s1) − b1(s1 + t1 + is2 + it2) − s3 − t3.

We can say that the dynamical matrix Kd (2.6) describes some dynamical boundary conditions.
The trace of T̃ (λ),

τ̃ (λ) = tr T̃ (λ) = λ3 + I1λ + I2

gives rise to the commutative subalgebra of the Sklyanin brackets (1.3). The polynomials I1,2,
quadratic and cubic in the variables si, ti , are integrals of motion for some integrable system
on so(4).
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To compare this system with the known examples of integrable systems on so(4), we
introduce two vectors J = (J1, J2, J3) and y = (y1, y2, y3) with entries

yi = �(si − ti) Ji = si + ti (2.7)

which satisfy to the following Lie–Poisson brackets:

{Ji, Jj } = εijkJk {Ji, yj } = εijkyk {yi, yj } = �2εijkJk. (2.8)

Because the physical quantities yk, Jk should be real, the parameter �2 must be real too and
algebra (2.8) is reduced to its two real forms so(4, R) and so(3, 1, R) for positive and negative
�2 respectively. The corresponding Casimir elements are equal to

C� = �2|J|2 + |y|2 C = (y, J). (2.9)

Let (y, J) and y × J stand for the inner vector product and for the vector cross-product
respectively. In variables (2.7) the Hamilton function is equal to I1 up to constants:

H = 2I1 +
C�

2�2
+ 2δ1δ2

= |J|2 + (a, J)(b, J) + �−1(b, y × J) − (b, (δ1 − δ2)�
−1 y + (δ1 + δ2)J) + 2(c, J) (2.10)

where the numerical vectors are

a = (0, 0, 2i) b = (i(a1 + b1), a1 − b1, i) c = (a0 + b0,−i(a0 − b0), 0).

The additional integrals of motion K take the following form:

K = −4iI2 = (b, J)[2|J|2 + �−1(a, y × J − (δ1 − δ2)y + �(δ1 + δ2)J) − �−2C� − 4δ1δ2]

− 2�−1(δ1 − δ2)(c, y) + 2�−1(c, y × J) + 2(δ1 + δ2)(c, J). (2.11)

The integrals of motion H and K are defined up to canonical transformations.
Suppose that the Hamiltonian function has to depend on the third component of the vector

y × J only. The Hamiltonian (2.10) has such a form after rotation, y → Uy and J → UJ, by
the following Euler angles:

φ = π

2
− i

ln a1 − ln b1

2
ψ = 0 θ = π

2
− i ln(−i + 2

√
a1b1) − i

2
ln(4a1b1 + 1).

This rotation acts on the numerical vectors a, b and c in the following way:

ã = U−1a = (
0, 2

√
1 − c2, 2ic

)
b̃ = U−1b = (0, 0,−ic−1)

c̃ = U−1c = 1

2c

(
α, β,− i

√
1 − c2

c
β

)
where

c = 1√
4a1b1 + 1

α = 2i(a1b0 − a0b1)√
a1b1(4a1b1 + 1)

β = −2(a1b0 + a0b1)√
a1b1(4a1b1 + 1)

.

Substituting ã, b̃ and c̃ instead of vectors a, b and c into (2.10) and (2.11), one gets integrals
of motion after rotation. The Hamilton function H (2.10) after rotation and renormalization,

Ĥ = H√
4a1b1 + 1

= c
(
J 2

1 + J 2
2 − J 2

3

) − 2
√

1 − c2J2J3

+
1

i�
(y2J1 − y1J2) + αJ1 + βJ2 + γ J3 + δy3 (2.12)

depends on five essential parameters: c, α, β,

γ = −i(δ1 + δ2) + 4
a1b0 + a0b1

4a1b1 + 1
δ = δ2 − δ1

i�
.

It is a real function on so(3, 1, R) with negative �2 only.
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According to [6, 8], the separated coordinates q1,2 for (2.12) are zeros of the polynomial

T11(λ) = (λ − q1)(λ − q2) = 0 (2.13)

whereas the conjugated momenta are equal to

pk = −i ln T21(qk) − ln(a1qk + a0). (2.14)

We can prove that qk, pk are Darboux variables using (2.13) and (2.14) and brackets (1.3).
By definition, the generating function of the integrals of motion is

τ̃ (λ) = trace T̃ (λ) = λ3 + I1λ − I2

= (λ + A0)T11(λ) + (a1λ + a0)T21(λ) + (b1λ + b0)T12(λ).

Substituting λ = qk into this equation one gets two separated equations:

q3
k + I1qk + I2 = exp(ipk) + det T̃ (qk) exp(−ipk) k = 1, 2.

Here we took into account that T11(qk) = 0 and T12(qk) = det T (qk)T
−1

21 (qk).

3. Quartic integrals of motion

According to [7], we can construct another commutative subalgebra generated by quadratic
polynomials on coefficients of Tij (λ), which are integrals of motion for another integrable
system associated with the same matrix T (λ) (1.1). We recall that if K±(λ) are solutions of
the reflection equation in classical mechanics:

{ 1
T (λ),

2
T (ν)} = [r(λ − ν),

1
T (λ)

2
T (ν)] +

1
T (λ)r(λ + ν)

2
T (ν) − 2

T (ν)r(λ + ν)
1
T (λ) (3.15)

then the coefficients of the trace of the Lax matrix,

L(λ) = K−(λ)T (λ)K+(λ)

(
0 1

−1 0

)
T t (−λ)

(
0 1

−1 0

)
(3.16)

give rise to the commutative subalgebra

{tr L(λ), tr L(ν)} = 0.

In (3.16) the superscript t stands for matrix transposition; matrix T (λ) satisfies (1.3) and
commutes with K±(λ).

For the rational r-matrix (1.4), the numerical solutions of the classical equation (3.15)
coincide with the solutions of the quantum reflection equation (see [7]), which were found in
[10]. We shall use the following parametrization of these solutions:

K+ =
(

b3λ + α (b1 + ib2)λ

(b1 − ib2)λ −b3λ + α

)
K− =

(
a3λ + β (a1 + ia2)λ

(a1 − ia2)λ −a3λ + β

)
. (3.17)

Inserting matrix T (λ) (1.1) and these boundary matrices K± into (3.16), one gets the Lax
matrix L(λ) for the two-site XXX Heisenberg magnet with boundaries. The trace of L(λ),

τ(λ) = tr L(λ) = −2(a, b)λ6 − I1λ
4 − I2λ

2 − I3 (3.18)

gives rise to the commutative subalgebra of the Sklyanin brackets (1.3). The integrals of
motion I1, I2 and I3 are second-, fourth- and sixth-order polynomials in the variables si, ti .

In variables (2.7), the Hamilton function H (3.19) is equal to I1 up to constants:

H = I1 + (a, b)
(
�−2C� − 2

(
δ2

1 + δ2
2

)) − 2αβ

= (J, AJ) + �−1(a × b, y × J) + 2(αa + βb, J )

− �−1(δ1 − δ2)(a × b, y) − (δ1 + δ2)(a × b, J) (3.19)
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where a = (a1, a2, a3), b = (b1, b2, b3) are numerical vectors and

A = a ⊗ b + b ⊗ a Aij = aibj + ajbi . (3.20)

The additional integral of motion

K = 2�2I2 − (a, b)

(
C2 +

C2
�

4�2

)
+ 2αβC� (3.21)

is a third-order polynomial in momenta J. For brevity, we present K at δ1 = δ2 = 0 only:

K = (�2|J|2 − |y|2)[�−1(a × b, y × J) + 2(αa + βb, J )] + |J|2[8�2αβ − 2(a, b)|y|2
+ 4�(αa − βb, y)] + (y × J, Ay × J) − 4�(y, J)(αa − βb, J). (3.22)

The third coefficient I3 is a constant:

I3 =
(

C�

4�2
+

C

2�
+ δ2

1

) (
C�

4�2
− C

2�
+ δ2

2

)
. (3.23)

The integrals of motion (3.19) and (3.22) depend on ten numerical parameters ai, bi, α, β, δ1, δ2

and they are defined up to canonical transformations.
Suppose that the Hamiltonian function has to depend on the third component of the vector

y × J only. The Hamiltonian (3.19) has such a form after the rotation J → UJ and y → Uy,
with the orthogonal matrix U defined by

ã = U−1a =
(√

e1

2
, i

√
e2

2
, 0

)
b̃ = U−1b =

(√
e1

2
,−i

√
e2

2
, 0

)
(3.24)

where ei are eigenvalues of the matrix A (3.20). Substituting ã, b̃ instead of vectors a, b into
(3.19) and (3.22), one gets the integrals of motion after rotation.

If a and b are linearly dependent vectors, then a × b = 0 and matrix A (3.20) has only
one non-zero value: e1 � |a|2. In this case the Hamilton function (3.19)

H̃ = J 2
1 + cJ1 c ∈ R

determines the degenerate or superintegrable system with a noncommutative family of
additional integrals of motion. For instance, there is the following quadratic integral:

K̃ = c1J
2
1 + J 2

2 + J 2
3 + c2y

2
1 + c3

(
y2

2 + y2
3

)
+ c4y1J1 + c5

(
y2J3 − y3J2

)
.

This is a special case of the Poincaré model [9]. For more details, see [11].
If a × b �= 0, the matrix A (3.20) has two non-zero eigenvalues:

e1,2 = (a, b) ± |a||b| e3 = 0.

In this case, after rotation and renormalization the Hamiltonian H (3.19) is equal to

H̃ = H

i
√

e1e2
= cJ 2

1 − c−1J 2
2 + �−1(y1J2 − y2J1)

+ α̃J1 + β̃J2 − (δ1 + δ2)J3 − �−1(δ1 − δ2)y3 (3.25)

where

c = −i
√

e1e
−1
2 α̃ = c1 = −i

√
2e−1

2 (α + β) β̃ =
√

2e−1
1 (α − β).

The Hamilton function H̃ (3.25) depends on five parameters instead of ten parameters as for
the initial Hamiltonian (3.19). This allows us to impose constraints on the vectors a and b and
to use triangular boundary matrices K± [7] instead of the general ones (3.17). Similar points
hold for the BCn Toda lattices [8] and for the Kowalevski–Goryachev–Chaplygin gyrostats
[12], which are also related to the reflection equations.
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Thus we can consider a low triangular solution of the reflection equations K+ (3.17),

b1 − ib2 = 0 (3.26)

without loss of generality. According to the Sklyanin method [6] the separated variables may
be defined by entries of the following intermediate matrix:

T (λ) = T (λ)K−(λ)

(
0 1

−1 0

)
T t (−λ)

(
0 1

−1 0

)
(3.27)

which satisfies to the classical reflection equation (3.15).
The separated coordinates q1,2 are non-trivial zeros of the polynomial

T12(λ) = λ
(
λ2 − q2

1

)(
λ2 − q2

2

) = 0 (3.28)

whereas the conjugated momenta are equal to

pk = −i ln T11(qk) − ln(b3qk + α). (3.29)

We can prove that qk, pk are Darboux variables using (3.28) and (3.29) and the reflection
equation (3.15).

As K+ is a low triangular matrix, the generating function of the integrals is

τ(λ) = trace L(λ) = −2(a, b)λ6 − I1λ
4 − I2λ

2 − I3

= traceK+T (λ) = (b3λ + α)T11(λ) + (b1 + ib2)λT12(λ) − (b3λ − α)T22(λ).

Substituting λ = qk into this equation, one gets two separated equations:

2(a, b)q6
k + I1q

4
k + I2q

2
k + I3 = exp(ipk) + det L(qk) exp(−ipk) k = 1, 2.

Here we took into account that T12(qk) = 0 and T22(qk) = det T (qk)T −1
11 (qk).

According to [12] we can introduce other separated variables related to the proposed
separated variables by canonical transformation and by flips of parameters. The existence of
the different separated variables is associated with the invariance of the Sklyanin brackets with
respect to a matrix transposition T → T t .

4. Conclusion

The Hamiltonians (2.12) and (3.19) belong to the following class of the Hamiltonians:

H = (J, AJ) + (a, y × J) + (b, J) + (c, y) (4.30)

possessing additional integrals of third and fourth degree in momenta. V V Sokolov kindly
informed us that there exist three different such integrable cases only [13].

The list of interesting integrable tops equally covered by the general scheme may be
extended. For instance, similar three- and four-site Heisenberg magnets with boundaries
describe systems of three and four interacting tops in R

3, which presumably have a physical
meaning in connection with the motion of a rigid body with elliptic cavities filled with ideal
fluid. Another way to proceed is to consider another representation T (λ) of the Sklyanin
algebra in 3 × 3 auxiliary matrix space.

On the other hand, starting with the quantum r-matrix algebras (1.3), (3.15) and using
the quantum operator T (λ) (1.1) we can construct the quantum counterpart of the proposed
systems. Furthermore, the standard technique of the quantum inverse scattering method also
gives solutions in the quantum case.

Acknowledgment

This research was partially supported by RFBR grant 02-01-00888.



Integrable systems on so(4) related to XXX spin chains with boundaries 4849

References

[1] Bogoyavlensky O I 1984 Izv. Akad. Nauk SSSR Ser. Mat. 48 883
[2] Veselov A P 1983 Dokl. Akad. Nauk SSSR 270 1094

Bobenko A I 1986 Funct. Anal. Appl. 20 53
[3] Sklyanin E K and Takebe T 1999 Commun. Math. Phys. 204 17
[4] Sklyanin E K 1985 J. Soviet. Math. 31 3417
[5] Kuznetsov V B and Tsiganov A V 1989 J. Phys. A: Math. Gen. 22 L73
[6] Sklyanin E K 1995 Progr. Theor. Phys. Suppl. 118 35
[7] Cherednik I V 1984 Theor. Math. Phys. 61 35

Sklyanin E K 1988 J. Phys. A: Math. Gen. 21 2375
[8] Sokolov V V and Tsiganov A V 2002 Theor. Math. Phys. 131 118
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